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Magnetic properties of spin glasses in a new mean field 
theory 

G Parisi 
INFN-Laboratori Nazionali di Frascati, 00044 Frascati, Italy 

Received 7 August 1979 

Abstract. We study the magnetic properties of spin glasses in a recently proposed mean field 
theory; in this approach the replica symmetry is broken and the order parameter is a 
function ( q ( x ) )  on the interval 0-1. Exact results at the critical temperature and approxi- 
mated results at all the temperatures are derived. The comparison with the computer 
simulations is briefly presented. 

1. Introduction 

In previous papers (Parisi 1979a, b, 1980) we have proposed a new mean field theory 
for spin glasses in the framework of the replica theory: the local order parameter is a 
function (q(x)) defined on the interval 0-1, If q(x) is constant, the replica symmetry (i.e. 
the permutations among different replicas) is exact and we recover the standard mean 
field theory (Edwards and Anderson 1975); if q(x) is x-dependent, the replica sym- 
metry is broken. 

This scheme has been successfully applied to the study of the properties of the S-K 
model (Sherrington and Kirkpatrick 1975) at zero magnetic field. This model is quite 
interesting: it is believed that the correct mean field theory should give exact results, so 
it is a good testing ground for different approaches. In this note we use the same 
techniques to study the magnetic properties of the S-K model also at h i 0. In perfect 
agreement with the results of de Almeida and Thouless (1978), we find that for high 
values of h, the replica symmetry is exact and at a temperature-dependent critical value 
(h,) of the magnetic field h a transition is present from the regime where q(x) is 
x-dependent, to the regime where q(x) = constant # 0. 

In D 2 we recall the formalism of Parisi (1980), which has been cast in a more 
compact form. In D 3 exact results are obtained for the S-K model near the critical 
temperature. Approximate results are obtained at all temperatures in § 4. In 0 5 we 
compare our results with the computer simulations (Sherrington and Kirkpatrick 1978), 
and we also discuss the problem of computing the ‘physical’ order parameter q p h  defined 
by 

q p h  = ((m ) 2 )  (1) 

where the inner bracket indicates the thermodynamic expectation value over the spin 
variables, while the outer bracket indicates the mean over the random spin couplings. 
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2. Algebraic preliminaries 

The order parameter in the replica theory approach to spin glasses is an n x n matrix 
( (Pep) in the limit n = 0. These matrices are defined as analytic continuation in n from 
integer n up to n = 0. It is not a simple job to write down the generical matrix of this 
infinite-dimensional space. We will consider only a very restricted class of matrices, 
those which can be written in the form: 

where q, are ( k  + 1) real parameters ( i  = 0, k ) ,  m, axe ( k  + 2) integer parameters ( i  = 0, 
k -t- l), and the ratios m,+l/mi are also integer numbers; by definition we have mo = 1 
and mk+l = a. The integer-valued function I ( x )  is equal to the smallest integer greater 
than or equal to x (e.g. I ( 0 - 5 )  = 1). 

This parametrisation of the matrix Cleo is a generalisation of the one introduced by 
Blandin (1978) and Blandin et a1 (1979). The motivations for this particular choice of 
parametrisation are discussed in Parisi (1980). 

In the spin glasses the order parameter Cleo is zero on the diagonal, so that 4' = 0. We 
prefer to consider the slightly more general case (G # 0); indeed the matrices defined in 
equation (2) form an algebra closed under addition and multiplication; in the rest of this 
section we will study the properties of this algebra. 

It is crucial to remark that if n is not a positive integer, there is no reason to have 
integer m,; in the most interesting case, they satisfy (for n = 0) the inequalities 

If the inequalities (3) are satisfied we can represent the matrix Qap with a pair 
[4, q ( x ) ] ,  q ( x )  being a piecewise constant function on the interval 0-1, defined by: 

In this representation the addition and the multiplication take a rather simple form. 
Let us define: 

where we denote by the double arrow the canonical representation (4). We have 
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where 

( a b )  = J a(xjb(x)  dx. 
0 

The addition rule is trivial while some algebra is needed to verify the multiplication 
rule. One also finds that 

1 
lim - Tr(A) = a' 
n-o n 

1 
lim - 1 (Aa.p)' = a " '  - (a ' ) .  
" - 0  n 

By continuity equations (5)-(8) can be extended to the case where q(x) is an 
arbitrary (not piecewise constant) continuous function, this last case being the most 
interesting for spin glasses. 

3. The Sherrington-Kirkpatrick model near T, 

In the S-K model the free energy ( F ( T ) )  is supposed to be given by: 

F ( T ) = m a x F [ Q ]  
iQ) 

PF[Q]=lim n - o  '{ n -;P2+:P2Tr(Q2)-!n[ S,=+l  exp(-/3'SaQmpSp)]] 

where the sum runs over the 2" configurations of the n spin variables S,, and the 
maximum is taken over all the zero-dimensional matrices, zero on the diagonal. We 
suppose that the matrix Q, which maximises F ( Q ) ,  has the form described in equation 
(2); this hypothesis can be verified by checking that the maximum of F [ Q ]  restricted on 
the matrices of the form ( 2 )  is a real maximum and not a saddle point. This can be done 
by computing the eigenvalue of the second derivative of F (de Almeida and Tliouless 
1978, Pytte and Rudnik 1979), but this task goes beyond the aim of this paper and it is 
postponed to further investigations. 

It is not simple to write F [ Q ]  as a functional of q(x); in this section we restrict 
ourselves to the case where Q is small, i.e. T is near to the critical temperature (T ,  = 1).  

In this situation F(Q) may be approximated by 

T T ~ ( Q ~ ) - $ T ~ ( Q ~ ) + ~  Y Q 4 +  . . . +  h 2 z  QaP)+F(Q)I (10) 
a.0 a.@ Q=O 

where we have retained the only term of order Q4 which is responsible for the breaking 
of the replica symmetry (Bray and Moore 1978, Pytte and Rudnik 1979); we have also 
neglected higher-order terms in the magnetic field. 

The equations for a stationary point of F are: 
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Using the ansatz equation (2) for the matrix Q, one finds 

' 0  

r '  
Lf = J q(x)  dx. 

0 

Differentiating with respect to x twice one obtains 

q'(x)(3yq(x) - X I  = 0. (13) 

Let us consider firstly h = 0. For simplicity we restrict ourselves to the case q (x) 3 0. 
Obviously, if y < 0, the only solution is the replica symmetric one, where 

Y 2  qs=?-+--qs .  
2 

If y > 0 there is also another solution: 

q ( x )  = q s  

4 = 7. 

The value of q (1) can be found by computing q as a function of q (1) and imposing the 

4=(1 - -  :xl)q(l) = 7. (16) 

last condition: 

One finds 

q(1) = 7 + 3 y q 2 ( 1 )  x 1 = 3 y 7 . + ; x : .  (17) 

Notice that 

4 < q s < q ( l ) .  (18) 

The second solution has a higher value of the free energy. For Ising spin y is positive 

The inclusion of higher orders in Q is long but straightforward and a systematic 

It may be interesting to note that at this order 

( y  =$); the correct solution is (15) and replica symmetry is broken. 

expansion near T, is possible. 

q(0)  = 0. (19) 

A preliminary analysis shows that equation (19) is an exact statement which remains 
valid at all orders in 7. 

Let us consider now the case h2  2 0 and let us put y = $. The magnetic susceptibility 
is given for small h by 

x = P(1-4). ( 2 0 )  

s ( x ) = q s  2q,(r - qs) + $4; = h * *  (21) 

The symmetric solution is always possible: 
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The non-trivial solution of equation (12) is 

q ( x )  = q(0 )  o s x s x o  

q ( x  j = 2x 
4(X) =4(1)  x 1 s x s l  

X O G X  4 x 1  

where 

where q(1) is fixed by the last condition on 4. 
The solution (23) make sense only if x1 > xo. We find that x1 = xo when h = h, where 

(24) 

Equation (23) implies that h' is of order T ~ / ~  in agreement with previous compu- 
tations (de Almeida and Thouless 1978). 

For h > h, only the symmetric solution is possible; for h < h, the asymmetric 
solution is favoured. At h = h, we have a second-order transition characterised by the 
breaking of the replica symmetry. 

c 3 1 /2  
qc(o) = 7 +;(q'(o))2 h"=[Z(qo) 1 . 

In the low-field region we find that the magnetic susceptibility is given by 

(25) 3 2 / 3  4/3  x ( h ) = l - ( z )  h . 
The second derivative of the susceptibility is divergent for h + 0: 

d2Xldh2 - h-'l3. (26) 

The singular behaviour of the susceptibility for small fields is connected to the fact 
that q(0)  = 0 for h = 0, and seems to be stable against the addition of higher-order terms 
in the free energy. Equation (26) is a prediction peculiar to this approach and it would 
be very interesting to check it directly in the computer simulations. d2x/dh2 is also the 4 
susceptibility, which behaves like (4  - T)-li2. More precisely we can define an effective 
free energy Fef[q] if we write 

1 

d x )  = 4 + P b )  I, p(x)=O Fed41 = max F[ql (27) 
P ( X )  

where the maximum is taken over all the functions p at fixed 4. We find 

Fef(4) = (4  - q0)5'2 (28) 

where 40 is the value at zero magnetic field. 
We have obtained some of the results of Thouless et a1 (19771, in particular the 

existence of a forbidden region for < qo and the infinite value of the 4 susceptibility. 
The method presented in this section can be used only near to the critical tempera- 

ture; at lower values of T a different approach is needed. This is the subject of the next 
section. We note, however, that if we write F ( T )  =F, (T )  +&(T,- TI5+ O(Tc-  T)6 ,  
and we neglect higher orders in T - T,, we find U(0)  - -0.753 and S(0) - 0-06, which is 
an improvement with respect to the standard treatment. 
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4. At all temperatures 

A rather simple-minded approximation which works rather well at all temperatures 
consists in approximating the function 4 ( x )  with a function taking only two values: 

Excellent results are obtained at zero magnetic field especially in the region T 2 0.2 
(Parisi 1979a). In this case the functional F [ Q ]  can be simply written as: 

P 2  
mY4o,q1, m)= ---[l+mq20+(1-m)q:-2q1] 4 

x I dy exp(-y2/2)(chfi)”’]] 

l? = p(q;”t + t 1 I2y  + h )  t = 41 -yo. 

The maximum of (29) can easily be found numerically. The repiica symmetry is 
broken if 

(41-L?o)m(l-m)fO. (31) 

For all fields h < hc(T)  and T < Tc = 1 equation (3 1) holds at the maximum. For 

Equation (20) implies that for small h 
T>Tc ,  q1=qozO. 

x ( h )  =PE1 -yon1 -41u -m)I. (32) 

In figure 1,  we show x against the temperature for h = 0. For T > 1, the antifer- 
romagnetic result ,y = 1/T holds. For T less than T, the upper curve is the calculated 

Figure 1. The higher curve is the zero-field susceptibility (x) plotted against temperature. 
The lower curve is the prediction of the replica symmetric approach (x,). 
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susceptibility while the lower curve is xs, the susceptibility in the conventional replica 
symmetric treatment of the model (xs = /3( 1 - qs) ) .  

As a typical example of the behaviour of the system in an external magnetic field h, 
we show in figures 2-4 various quantities as functions of h at T=0.3 .  At this 
temperature h,  = 3 . .  No unexpected phenomenon is present; in this approximation the 
singular behaviour of x ( h )  at h = 0 is absent. 

We notice that both 4 and q(1) = q1 are increasing functions of h ; 4 behaves quite 
smoothly at the transition point, while dql/dh is discontinuous. 

0 
0 O L  0 8  1 2  1 6  2 0  

h 

Figure 2. We plot the magnetic susceptibility x ( h )  against h for T=O.3. The curve, 
which is higher at h = 0, is the result of our calculation; the other curve is x S ( h ) .  The two 
curves coincide for h 2 h, = 1, which is indicated by an arrow. 

h 

Figure 3. The decreasing and the increasing curve are, respectively, q1-q3  and M as 
functions of h. At h = h,, q1 -qo  = 0 and m Z 0. 
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h 

Figure 4. The lower and upper curves are, respectively, 4 and q(1) as functions of h. They 
coincide for h 2 h,. 

5. Discussion 

The expert reader has probably realised that our results for the susceptibility do not 
agree with the computer simulations of Sherrington and Kirkpatrick (1978). These 
authors find that at h = 0, ,y <,ys (,y = 0 at T = O), i.e. the opposite of our results. 

The origin of this discrepancy is not clear: we notice that the inequality F > F, 
(Chalupa 1978) implies that ,y > xs, at least in the mean. ,y f 0 at T = 0 is not in variance 
with a quadratic specific heat only if very large size clusters are relevant: the onset of 
equilibrium in a large-scale cluster is a slow phenomenon and it may be invisible in a not 
long enough Monte Carlo approach (Fernandez and Medina 1979). 

It is not known if hysteresis or remanence is present in the S-K model; if that 
happens one should be very careful in extracting the susceptibility from Monte Carlo 
data. Unfortunately no accurate simulations exist at non-zero magnetic field; the 
zero-field susceptibility has been extracted from the spin-spin correlations. A direct 
computation of the susceptibility would be welcomed. 

In this approach it is unclear how to compute the physical order parameter qph 
(defined in equation (1)). A simple-minded argument gives 

Equation (33) does agree with the computer simulations. If equation (33) is correct, 
when the replica symmetry is broken: 

qph f 4 d! f P(l-qph)* (34) 

It is suggested that one should consider the validity of equation (34) as a signal for 
the breaking of the replica symmetry. Unfortunately the arguments leading to equation 
(33) are not very strong. The soundness of equation (33) may be investigated by 
studying the time-dependent correlations (De Dominicis 1979). However, we insist 
that good-quality computer simulations at non-zero h would be very useful to clarify 
the situation. 
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